Estimation of Consistent Probabilistic Context-free Grammars

نویسندگان

  • Mark-Jan Nederhof
  • Giorgio Satta
چکیده

We consider several empirical estimators for probabilistic context-free grammars, and show that the estimated grammars have the so-called consistency property, under the most general conditions. Our estimators include the widely applied expectation maximization method, used to estimate probabilistic context-free grammars on the basis of unannotated corpora. This solves a problem left open in the literature, since for this method the consistency property has been shown only under restrictive assumptions on the rules of the source grammar.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying impressive parameters on the performance of Persian probabilistic context free grammar parser

In linguistics, a tree bank is a parsed text corpus that annotates syntactic or semantic sentence structure. The exploitation of tree bank data has been important ever since the first large-scale tree bank, The Penn Treebank, was published. However, although originating in computational linguistics, the value of tree bank is becoming more widely appreciated in linguistics research as a whole. F...

متن کامل

A Tutorial on the Expectation-Maximization Algorithm Including Maximum-Likelihood Estimation and EM Training of Probabilistic Context-Free Grammars

The paper gives a brief review of the expectation-maximization algorithm (Dempster, Laird, and Rubin 1977) in the comprehensible framework of discrete mathematics. In Section 2, two prominent estimation methods, the relative-frequency estimation and the maximum-likelihood estimation are presented. Section 3 is dedicated to the expectation-maximization algorithm and a simpler variant, the genera...

متن کامل

Probabilistic Unification Grammars

Recent research has shown that unification grammars can be adapted to incorporate statistical information, thus preserving the processing benefits of stochastic context-free grammars while offering an efficient mechanism for handling dependencies. While complexity studies show that a probabilistic unification grammar achieves an appropriately lower entropy estimate than an equivalent PCFG, the ...

متن کامل

Consistency of Stochastic Context-Free Grammars From Probabilistic Estimation Based on Growth Transformations

An important problem related to the probabilistic estimation of Stochastic Context-Free Grammars (SCFGs) is guaranteeing the consistency of the estimated model. This problem was considered in 3, 14] and studied in 10, 4] for unambiguous SCFGs only, when the probabilistic distributions were estimated by the relative frequencies in a training sample. In this work, we extend this result by proving...

متن کامل

Statistical Inference and Probabilistic Modelling for Constraint-Based NLP

In this paper we present a probabilistic model for constraint-based grammars and a method for estimating the parameters of such models from incomplete, i.e., unparsed data. Whereas methods exist to estimate the parameters of probabilistic context-free grammars from incomplete data ([2]), so far for probabilistic grammars involving context-dependencies only parameter estimation techniques from c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006